Evaluate the following products without multiplying directly
$93 \times 95$
$8835$
$7876$
$8799$
$4589$
$=(90+3)(90+5)$
$=(90)^{2}+(3+5)(90)+(3)(5)$
$=8100+720+15=8835$
Factorise the following:
$1-64 a^{3}-12 a+48 a^{2}$
Factorise
$6 x^{3}+7 x^{2}-14 x-15$
Evaluate
$153 \times 147$
$x^{2}+4 y^{2}+9 z^{2}-4 x y-12 y z+6 z x$
By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where
$p(x)=x^{3}-3 x^{2}+4 x+50, g(x)=x-3$
Confusing about what to choose? Our team will schedule a demo shortly.